Wednesday, December 1, 2021

Remembering Paul J. Umhoefer

I recently wrote this memorial for the Geological Society of America Structural Geology and Tectonics Division (which I am now beginning my stint as chairman or soon will). That is the reason for the first person plural.

We heard with great sadness and shock of the passing of our dear friend and colleague Professor Paul J. Umhoefer (Northern Arizona University) in late November 2021. Some of us saw him at the 2021 GSA meeting and to lose him so soon after weighs on us.

Paul Umhoefer was a great scientist, mentor and teacher, and servant to his professional community and department. He was well known for his research in tectonics, basin analysis, structural geology with carefully collected field data from the western US, Baja California, and Anatolia.

Much of his research was done in close collaboration with his many students at NAU. He was a strong mentor who guided many of those projects to publication and the students went on to success, especially in academia and the petroleum and geo-environmental industries. His professional colleagues appreciated his guidance and invitation to join interesting projects.

Paul was a tireless leader in the geoscience community. He helped to propel important community initiatives, including Margins/GeoPrisms. He not only contributed synthetic ideas but was an integrator and conciliator. He was an effective chair of his department helping guide it in a time of important growth. We are grateful for this leadership in the Geological Society of America Structural Geology and Tectonics Division where he was a long time active member, proponent of GSA fellows, and had recently completed the arc of leadership of the division.

Along with his tireless work ethic, Paul was enthusiastic and gregarious with a big smile and a joke for his friends and colleagues delivered in his deep creaky voice. He loved to talk about ideas: geoscience, politics, sports.

We counted on seeing him again soon. We are sorry to lose him and our thoughts are with his family and close friends.

Paul Umhoefer in one of his favorite places: the southern Baja California coast line with uplifted terraces and Tertiary sedimentary and volcanic rocks awaiting his attention (Arrowsmith photo, 2005)

--Ramon Arrowsmith (incoming Division Chair) on behalf of the Geological Society of America Structural Geology and Tectonics Division

Sunday, October 24, 2021

Remembering Omar Abdullah

I heard in late August 2021 that Omar Abdullah was killed in the unrest that is occurring in Ethiopia. I did not learn of any details but he was an embasa--a lion--and no doubt he was there defending his family and lands. He was an amazing guy that I got to know over the years working in the Afar with the Ledi Geraru Project. Others knew him better. I appreciated him very much. He was from the Hadar woreda--administrative area--but we gave him a special title: "camp specialist" so we could keep him employed even when we were working in other areas with other Afars. Even the other Afars grew to appreciate him and his sense of humor.

Here are two pictures from 2002 (along with Mark Jakofsky). We can appreciate Omar's sense of fashion and poise.

Omar had a great sense of humor. There is a drainage called "Fat Ha'". It means big mouth in Afar. As Omar said, "like me!" He was also fascinated with our western scientist lives. He called himself "Black American." He was very friendly and happy to solve problems for the success of the project.

2006 pictures including Erin DiMaggio--she and I had lots of fun with Omar over the years!

We probably will not be back to Ethiopia and the Afar for a while sadly given the unrest. It will be very sad when we do and we really feel the loss of Omar (and probably others of our Afar friends). May he rest in peace. He always wanted me to bring him a small radio I think so he could listen to music while he waited for us to our work. I regret never quite getting around to that.

2009 and 2012 pictures including Erin DiMaggio and Matt Jungers.

Friday, June 11, 2021

NSF AC GEO Report on Portfolio Review of EAR Seismology and Geodesy Instrumentation Completed

In April 2021, we finished a fairly intensive project: AC GEO Report on Portfolio Review of EAR Seismology and Geodesy Instrumentation. I defer to that page as the official one, but I wanted to put a note here as well.

I was the chair of the committee, and the citation is

Arrowsmith, J R., Brodsky, E. E., Cooper, C. M., Elliott, J. L., Fee, D., Fischer, K.M., Hammond, W. C., La Femina, P., Lekic, V., Wang, H., and Worthington, L. L., Recommendations for Enabling Earth Science Through NSF’s Geophysical Facility – A Portfolio Review of EAR Seismology and Geodesy Instrumentation, Report to the US National Science Foundation, April 2021.

But, I want to really highlight the efforts of the entire committee! This was a really strong group that worked hard and respectfully together to come up with something we are quite proud of. It has some depth which I hope will give it shelf life.

Here are the rest of the Acknowledgements:
Thank you to UNAVCO President Rebecca Bendick and Director of Geodetic Infrastructure Glen Mattioli as well as IRIS President Robert Woodward and Portable Programs Manager Kent Anderson for their rapid and thorough responses to the committee queries. Christopher Crosby (UNAVCO) provided input on geodetic imaging. Jonathan Ajo-Franklin (Rice University), Kent Anderson (IRIS), Jnaneshwar Das (Arizona State University), Rob Evans (WHOI), W. Steven Holbrook (Virginia Tech), and Glen S. Mattioli (UNAVCO) kindly made themselves available for interviews with the committee. We are grateful to Lindsay M. Martin who supported the committee very ably as science assistant from the National Science Foundation. Finally, many thanks to Margaret Benoit (National Science Foundation Program Director) for her careful guidance.

Wednesday, January 6, 2021

Salt River terraces field geology exercise and updated guide

The Salt River in central Arizona has a spectactular set of fluvial terraces developed along it. I have lead a number of field trips along the Salt River for outreach and most importantly for our GLG451 Field Geology I course where we use a site along the Salt River for a mapping exercise. I have recently updated the materials associated with that exercise in anticipation of this Spring's class which will include a virtual component.

Tour from ASU to the Salt River site.
Drone overflight of the key sites for the exercise.

I built on some of the very nice writing and descriptions of Professor Pewe when I wrote up a field trip guide and ran a few field trips in the early 2000s. See this LINK. I updated that guide and it is available here: Landscape and geologic history along the Salt River near Tempe and Mesa, Arizona.

Here is the assignment with many additional links and explanations: Virtual Field Geology assignment for Salt River Field Geology I 2021.
I made a long explanation of the GIS:

These were of great interest to Professor Troy L. Pewe of Arizona State University's Department of Geology. He moved to Arizona from Alaska and converted his research from permafrost to desert processes. I was lucky to learn from him when I first came to ASU in 1995. He took me under his wing and shared with me much of what he had learned. Most importantly, he helped me to learn the field trips and field sites he had developed and discovered. I am extremely grateful to him. I recognize Brian Gootee who was a great friend of the Pewe Family and who has preserved much of the Pewe legacy at the Arizona Geological Survey.

Pictures from those early field trips with Prof. Pewe.

Thursday, December 31, 2020

Exploring diffusion for hillslope changes using a spreadsheet

I became obsessed with diffusion erosion modeling in my PhD work. It is a simple (certainly oversimplified) way to think about how hillsloopes may change over time in the absence of mass wasting, debris flow, and fluvial processes. There is a lot to say about it, but I wanted to capture a few items I recently developed.

Here is an explanation and assignment on the topic in my Computers in Geology class: Lecture 8: Exploring diffusion using Excel.

One of the challenges that I have had in some applications is that the computational "space" was too small in the spreadsheet, given that it is fixed. Of course this is not a problem if one dynamically determines the number of time steps for example based on a stability criterion and you do it with a for or while loop in something like Matlab. So, when I was helping Emily Apel with her senior thesis recently, I built her a big spreadsheet (seemed easier given the limited time that she had.

Here is the original spreadsheet with only 27 space steps and 191 time steps. It is good for teaching and quick demos: LINK to Spreadsheet.

Above is the screen cap of the main interface page where the user just changes the bold cells and watches the calculations in real time.
Above is the screen cap of the Model Calculation Space tab which shows the compuational engine with its fixed elevation boundary conditions and explicit centered in space and forward in time finite differences.

Here is the big spreadsheet with 250 space steps and 1000 time steps: LINK.

And, here is a video that I built to explain the general activity for Emily Apel, but it may be useful for others. It explains the two spreadsheets that are linked above.

One of the cirtical concepts that is accessible in both of these spreadsheets is the opportunity explore not only initial step models, but also continuously displaced scenarios.

Here are a few other blog posts and recent publications which might be of interest as well:

Tuesday, December 15, 2020

Simple computations of scalar seismic moment and moment magnitude

In my classes and for research, sometimes it is useful to calculate the scalar seismic moment (M0; basically a geometric measure of the total static energy release at a 0th order). It is a function of the area of a fault that slipped times the average slip times the shear modulus of the volume. The latter is usually assumed to be 30GPa. The main challenge (after determining the parameters) is to get the units all to be the same (dimensions of Newtons and meters):

M0= mu*Length*Width*U_bar.

And, once we have that scalar moment in Nm, then we usually want to convert it to moment magnitude (Mw):

Mw = 2/3 log10(M0) – 6.

Here is a simple spreadsheet to do this calculation: LINK
Here is a simple and older lecture I have used in introductory level geoscience courses: LINK

Sunday, December 13, 2020

New fast workstation and sUAS capability for School of Earth and Space Exploration course development


Our geoscience courses have benefited from plenty of course development, especially lately as we have moved online and virtual. I recently was able to invest SESE course fees to build out our capabilities for high resolution mapping and 3D work. Javier Colunga built a nice and fast Windows workstation, and we also purchased a Mavic Pro 2 sUAS system. The descriptions are below for reference.

Workstation description

We have been building these "gaming" style fast desktops for a while and this latest incarnation is powerful for graphics intensive and 3D work, especially structure from motion photogrammetry (e.g., Johnson, et al., 2014 and GSA short course).
Here is a short description of the hardware (cost approx. $5k):

  • CPU: Ryzen Threadripper 3970X 32-core/64-thread (with a premium cpu cooling solution)
  • Main Memory: 128GB DDR4 3600
  • Graphics Card: GeForce RTX 2080 Super
  • Storage: Samsung 1TB M.2 NVME OS drive, additional 4TB hard drive
  • Operating system: windows 10 Enterprise
  • Input: Logitech wireless keyboard and mouse
  • Monitor: HP 27 inch 1440P
Here is the main software installed:
  • Google Earth Pro
  • Matlab R2020a
  • Camtasia 2020
  • Cloudcompare
  • Agisoft Metashape
  • ArcGIS 10.7
  • QGIS
Here is more description, how to connect remotely, and a sign up sheet. LINK

sUAS description

For SESE, we have purchased a DJI Mavic 2 Pro (actually the FlyMore combo so it has a nice case and 3 batteries). This is a nice mapping and aerial documentation system.

Devin Keating has been helping to get the system into production mode. He has built a nice documentation of the system and its use. He also registered it with the FAA so we have a tail number. See this LINK. To operate it, one should have the part 107 Remote Pilot certification. And, there are ASU oversight requirements as well.

Recent course related work using this type of system (and computed on the nice workstation described above):

Warford Ranch volcano (Arizona) sUAS mapping

Virtual field geology exercises for GLG451 Field Geology I Spring 2020

Material for virtual exercises for GLG452 Field Geology II at Camp Tontozona AZ